Design Science
I denna övning tittar vi på metoden Design Science och hur den kan vara ett bra sätt att strukturera en studie där vi samtidigt utvecklar programvara.
#Metoden Design Science
När vi skriver ett examensarbete eller forskar kring Informationssystem eller programvara skapar vi en artefakt. Att skilja mellan ren programmering och skapande från forskning är dock inte helt lätt och därför behöver vi ett strukturerat tillvägagångssätt. För detta ändamålet kan vi använda oss utav Design Science [1], [2].
#Metod best practices
Vi lyfter ett antal guidelines för att genomföra en design science studie från [3]. Först beskrivs Guideline och sedan vart man kan hitta rekommendationen i artikeln.
Guideline | Del av artikel |
---|---|
[G1] Distinguish practical problems from knowledge questions | Section 2. In practical problems stakeholders desire to change the world, in knowledge questions the researcher desires to change his/her knowledge of the world. |
[G2] Solve practical problems by the regulative cycle | Figure 1. |
[G3] Distinguish problem investigation from design validation | Section 3. In problem investigation existing phenomena are investigated, in design validation the effects of an unimplemented design are predicted |
[G4] Problem investigation may be problem-driven, solution-driven, goal-driven, or impact-driven | Section 3.1. In problem investigation, one or more of these tasks needs to be done: diagnose a problem, operationalize goals, check the validity of the design argument, or investigate the impact of realized implementations. |
[G5] When designing a solution, maintain the design argument | Section 3.3. The causation part of the design argument says that the solution in a context will have certain effects, the valuation part says that these effects satisfy stakeholder criteria |
[G6] When validating a design, consider trade-offs and sensitivity | Section 3.1. In trade-offs we vary the solution, in sensitivity analysis we vary the environment. |
[G7] When validating a design, aim to incorporate conditions of practice | Section 5.3. Scale up from controlled conditions to realistic conditions. |
[G8] When solving a knowledge question in the regulative cycle by means of research, no research method is banned. | Section 5.3. Research design must be justified, as anywhere else, in terms of research questions, the investigated domain and available resources to do the research. |
Och för att utvärdera de olika delar av vår design eller lösningen på problemet kan vi använda dessa metoder enligt [4].
Del av studie | Sätt att utvärdera delen |
---|---|
1. Observational | Case Study: Study artifact in depth in business environment Field Study: Monitor use of artifact in multiple projects |
2. Analytical | Static Analysis: Examine structure of artifact for static qualities (e.g., complexity) Architecture Analysis: Study fit of artifact into technical IS architecture Optimization: Demonstrate inherent optimal properties of artifact or provide optimality bounds on artifact behavior Dynamic Analysis: Study artifact in use for dynamic qualities (e.g., performance) |
3. Experimental | Controlled Experiment: Study artifact in controlled environment for qualities (e.g., usability) Simulation: Execute artifact with artificial data |
4. Testing | Functional (Black Box) Testing: Execute artifact interfaces to discover failures and identify defects Structural (White Box) Testing: Perform coverage testing of some metric (e.g., execution paths) in the artifact implementation |
5. Descriptive | Informed Argument: Use information from the knowledge base (e.g., relevant research) to build a convincing argument for the artifact’s utility Scenarios: Construct detailed scenarios around the artifact to demonstrate its utility |
#Metod referenser
[1] Oates, B.J., Griffiths, M. and McLean, R., 2022. Researching Information Systems and Computing. Sage.
[2] March, S.T. and Smith, G.F., 1995. Design and natural science research on information technology. Decision support systems, 15(4), pp.251-266. https://doi.org/10.1016/0167-9236(94)00041-2
[3] Wieringa, Roel. Design science as nested problem solving. In Proceedings of the 4th international conference on design science research in information systems and technology, pp. 1-12. 2009. https://doi.org/10.1145/1555619.1555630
[4] Hevner, Alan R., Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in information systems research. MIS quarterly (2004): 75-105. https://doi.org/10.2307/25148625
#Avslutningsvis
Vi har tittat på metoden Design Science och hur vi strukturerat kan utvärdera programvara.
#Revision history
- 2022-12-19: (A, efo) Första utgåvan.