668 Chapter 10 Management and Incidents

SIDEBAR 10-3 Continued

had created an extra account being charged against Stoll's projects, but the monthly bill was not being delivered to Stoll (or to anyone else, because the account had no billing address). Coincidentally, Stoll received a report that someone from his site had been breaking into military computers, but he didn't initially connect these two data points.

Stoll removed the unauthorized account but found that the attacker remained, having acquired system administrator privileges. Thinking the attacker was a student at a nearby university, Stoll and his colleagues wanted to catch the attacker in the act. They soon found the flaw the attacker exploited but decided to keep the culprit engaged so they could investigate his actions, using an elaborate masquerade in which Stoll controlled everything the attacker could see and do [STO88, STO89]. Stoll's trap was one of the first examples of a honeypot (introduced in Chapter 5).

After months of activity Stoll and authorities identified the attacker as a German agent named Markus Hess, recruited by the Soviet KGB. German authorities arrested Hess, who was convicted of espionage and sentenced to one to three years in prison.

Accounting records that did not balance—off by just \$0.75—led to investigation and conviction of an international spy. When you begin to investigate an incident, you seldom know what its scope will be.

10.4 RISK ANALYSIS

Next we turn to a management activity at the heart of security planning. **Risk analysis** is an organized process for identifying the most significant risks in a computing environment, determining the impact of those risks, and weighing the desirability of applying various controls against those risks.

Good, effective security planning includes a careful risk analysis. A **risk** is a potential problem that the system or its users may experience. We distinguish a risk from other project events by looking for three things, as suggested by Rook [ROO93]:

- *A loss associated with an event*. The event must generate a negative effect: compromised security, lost time, diminished quality, lost money, lost control, lost understanding, and so on. This loss is called the **risk impact**.
- *The likelihood that the event will occur.* The probability of occurrence associated with each risk is measured from 0 (impossible) to 1 (certain). When the risk probability is 1, we say we have a problem.
- *The degree to which we can change the outcome*. We must determine what, if anything, we can do to avoid the impact or at least reduce its effects. **Risk control**

involves a set of actions to reduce or eliminate the risk. Many of the security controls we describe in this book are examples of risk control.

Risk control is a set of actions to reduce or manage risk.

We usually want to weigh the pros and cons of different actions we can take to address each risk. To that end, we can quantify the effects of a risk by multiplying the risk impact by the risk probability, yielding the **risk exposure**. For example, if the likelihood of virus attack is 0.3 and the cost to clean up the affected files is \$10,000, then the risk exposure is \$3,000. So we can use a calculation like this one to decide that a virus checker is worth an investment of \$100, since it will prevent a much larger expected potential loss. Clearly, risk probabilities can change over time, so a risk analysis activity should track them and plan for events accordingly.

Risk is inevitable in life: Crossing the street is risky but that does not keep us from doing it. We can identify, limit, avoid, or transfer risk but we can seldom eliminate it. In general, we have three strategies for dealing with risk:

- *avoid* the risk by changing requirements for security or other system characteristics
- *transfer* the risk by allocating the risk to other systems, people, organizations, or assets; or by buying insurance to cover any financial loss should the risk become a reality
- *assume* the risk by accepting it, controlling it with available resources and preparing to deal with the loss if it occurs

Thus, costs are associated not only with the risk's potential impact but also with reducing it. **Risk leverage** is the difference in risk exposure divided by the cost of reducing the risk. In other words, risk leverage is

(risk exposure before reduction) – (risk exposure after reduction) (cost of risk reduction)

The leverage measures value for money spent: A risk reduction of \$100 for a cost of \$10, a 10:1 reduction, is quite

a favorable result. If the leverage value of a proposed action is not high enough, then we look for alternative but less costly actions or more effective reduction techniques.

Risk leverage is the amount of benefit per unit spent.

Risk analysis is the process of examining a system and its operational context to determine possible exposures and the potential harm they can cause. Thus, the first step in a risk analysis is to identify and list all exposures in the computing system of interest. Then, for each exposure, we identify possible controls and their costs. The last step is a costbenefit analysis: Does it cost less to implement a control or to accept the expected cost of the loss? In the remainder of this section, we describe risk analysis, present examples of risk analysis methods, and discuss some of the drawbacks to performing risk analysis.

The Nature of Risk

In our everyday lives, we take risks. In riding a bike, eating oysters, or playing the lottery, we take the chance that our actions may result in some negative result—such as being injured, getting sick, or losing money. Consciously or unconsciously, we weigh

670 Chapter 10 Management and Incidents

the benefits of taking the action with the possible losses that might result. Just because a certain act carries a risk, we do not necessarily avoid it; we may look both ways before crossing the street, but we do cross it. In building and using computing systems, we must take a more organized and careful approach to assessing our risks. Many of the systems we build and use can have a dramatic impact on life and health if they fail. For this reason, risk analysis is an essential part of security planning.

We cannot guarantee that our systems will be risk free; that is why our security plans must address actions needed should an unexpected risk become a problem. And some risks are simply part of doing business; for example, as we have seen, we must plan for disaster recovery, even though we take many steps to avoid disasters in the first place.

When we acknowledge that a significant problem cannot be prevented, we can use controls to reduce the seriousness of a threat. For example, you can back up files on your computer as a defense against the possible failure of a file storage device. But as our computing systems become more complex and more distributed, complete risk analysis becomes more difficult and time consuming—and more essential.

Steps of a Risk Analysis

Risk analysis is performed in many different contexts; for example, environmental and health risks are analyzed for activities such as building dams, disposing of nuclear waste, or changing a manufacturing process. Risk analysis for security is adapted from more general management practices, placing special emphasis on the kinds of problems likely to arise from security issues. By following well-defined steps, we can analyze the security risks in a computing system.

The basic steps of risk analysis are listed below.

- 1. Identify assets.
- **2.** Determine vulnerabilities.
- **3.** Estimate likelihood of exploitation.
- 4. Compute expected annual loss.
- 5. Survey applicable controls and their costs.
- 6. Project annual savings of control.

Sidebar 10-4 illustrates how different organizations take slightly different approaches, but the basic activities are still the same. These steps are described in detail in the following sections.

SIDEBAR 10-4 Alternative Steps in Risk Analysis

There are many formal approaches to performing risk analysis. For example, the U.S. Army used its Operations Security (OPSEC) guidelines during the Vietnam War [SEC99]. The guidelines involve five steps:

- 1. Identify the critical information to be protected.
- 2. Analyze the threats.