

Faculty of Computing
Blekinge Institute of Technology
SE-371 79 Karlskrona Sweden

Security Threats in a RESTful API
The Confusing World of Keys

Oscar Lifh

1 ABSTRACT

Context. With the huge growth of popularity within client side programming, RESTful
API’s popularity grows with it. Security within a RESTful API is of huge importance to
secure the API from uninvited guests. What techniques are frequently used to secure API’s,
and why?

Objectives. In this study, we investigate which techniques of API security that is used
frequently today and consider some examples of distributed systems and how they work with
security. Including some articles discussing the important requirements of error handling,
access control and format checking.

Results. We address principles for handling errors with HTTP status codes and the main
methods of protection against interception by “bad users” and misuse by “good users”. This
results in a list of principles regarding HTTP status codes, access control and format
checking.

Conclusions. We conclude that many well distributed systems are using similar techniques
to address the security issue of RESTful APIs. Yet there is no specific standard defined for
API security, which leads to a lot of confusion. From these well distributed systems we take
knowledge and addresses the techniques and why we need the techniques provided.

Keywords: REST, security, Access Control, API Key

2

2 CONTENTS
1 ABSTRACT ...I

2 CONTENTS ... 2

3 INTRODUCTION ... 3
3.1 BACKGROUND.. 3
3.2 PURPOSE .. 3
3.3 DISPOSITION .. 3

4 RESEARCH QUESTIONS ... 4

5 METHOD ... 5
5.1 LITERATURE REVIEW ... 5
5.2 ANALYSIS .. 5
5.3 WRITING .. 5

6 ANALYSIS AND DISCUSSION .. 6
6.1 PRINCIPLES OF ERROR HANDLING ... 6

6.1.1 HTTP Status Codes ... 6
6.1.2 Content of Error Code .. 7

6.2 PRINCIPLES OF SECURITY ... 8
6.2.1 Why Security? ... 8
6.2.2 Authentication VS Authorization ... 8
6.2.3 HTTPS .. 9
6.2.4 Access Control .. 9
6.2.5 Format Checking .. 11

7 RESULTS ... 12
7.1 PRINCIPLES OF HANDLING ERROR STATES .. 12
7.2 MAIN TYPES OF INTERCEPTION AND PROTECTION AGAINST IT? .. 12

7.2.1 Threats .. 12
7.2.2 Protecting Against It ... 13

7.3 MAIN TYPES OF MISUSE AND PROTECTION AGAINST IT? ... 13
8 CONCLUSION .. 14

9 REFERENCES ... 15
9.1 SOURCES .. 15
9.2 FIGURES ... 17

3

3 INTRODUCTION

3.1 Background
In the year of 2000, a man named Roy Thomas Fielding gave rise to a concept that was
going to change the architecture of websites. Fielding described the “Representational State
Transfer” (REST) in his Ph.D. dissertation [6], as the architectural style of the World Wide
Web. REST advocates that web applications should regress to HTTP requests and to how it
originally was envisioned. This means dividing the system into client and services and to use
GET, PUT, POST and DELETE. The benefit of regressing to these requests is the “Service-
oriented Architecture” (SOA) [7] that the system achieves. With this style of architecture,
systems do not have to be integrated with strong dependencies. Instead, the systems are
divided into a client side and a service side.

Figure 3-1. The web as a client-server application framework

To communicate between the client side and the service side (back-end), a so called RESTful
API can be used. RESTful API’s has two main responsibilities, listen for requests sent by the
client side, and to respond these requests with appropriate data. This communication chain
uses the original HTTP requests listed above.

Because the RESTful API’s often is used with public access, chances of misuse and the risk
of interception is huge within them. Therefore, every developer must be aware of the risks
they are encountering while using this as a part of their system.

3.2 Purpose
The market is rapidly adapting to the modern technologies of frontend frameworks in focus.
Adapting in such a fast phase that RESTful services often loses priority. Developers tend to
miss out on the knowledge of the vulnerabilities that comes with the API’s, with possible
cause of end-users breaking the API with misuse or interception by hackers. The purpose of
this study is to address the main security problems with RESTful API’s and to specify some
standard routines to prevent weaknesses in them.

3.3 Disposition
In this study, questions listed in the part “Research Questions” is discussed thoroughly. The
study starts off with a background of REST and how RESTful API’s work. An important
part to understand the problem this study is facing, and the questions being investigated.

The study then considers understanding the concept of RESTful API’s, diving into the
method used for researching, and a review of the literature. This leads up to analysis and
discussion where information from sources is being explained. Results are then being
presented and leads to a conclusion which describes some methods of safely protecting your
RESTful API’s. Links to the references are to be found in the last section of the study.

4

4 RESEARCH QUESTIONS
This study will focus on the following listed questions, analyzing and discussing them
thoroughly in the fourth section (“Analysis and Discussion”) of the study. The
questions investigated where written to cover the necessary parts needed to securely
communicate with a RESTful API.

Q1. What is the best principles of handling error states in a RESTful API?
End-users need response on actions they have taken in the system. Without a noticeable
response, one often gets frustrated and starts redoing the action repeatedly. With repeated
misuse of the system, it could be interrupted, or in a worst-case crash. To prevent this we try
to find the best principles to handle these error messages, with readability and understanding
in mind.

Q2. What is the main types of interceptions that the RESTful API is vulnerable to, and
how to protect the API from them?
There is always a risk of a bad-user trying to break into your system and hurt your business.
This part focuses on presenting a way to protect your API from unintended use and from
possible interception of critical data.

Q3. What is the main types of misuses that may be caused by “good users”, and how do
we prevent them from happening?
Even though the end-user may use the system correctly, it would still be vulnerable to
misuse. Just because the end-user thinks he/she is doing the correct action, doesn’t
necessarily mean he/she really does it. How do we prevent errors from “good users”? This
focuses on presenting a way to protect the API from the most common risks

5

5 METHOD
In this section, several methods used when writing this study is explained. Focusing
on method for reviewing literature, analysis and writing. The purpose of this section is
to explain the process of writing so that the reader understands the procedure.

5.1 Literature Review
REST was first introduced in Roy Thomas Fielding’s dissertation [6] in the year of 2000. All
history reviewed in this study is therefore pointing back towards Roy Thomas Fielding’s
explanation of it.

Literature about RESTful API principles and the security within them became a widely-
discussed topic much later. Articles reviewed in this study is therefore no older than from
2010 with the reason of low knowledge in this area before the 10’s.

While reviewing literature and articles, the popularity of the writer was to consider. Most
writers of the mentioned texts have several articles in the same topic, and is considered as a
valid source by reviewers. Others point their information towards more reliable sources.
Which has led me to primary sources.

5.2 Analysis
To be able to analyze the gathered sources, at least two articles on the same topic is
compared. The reason for this is to have several aspects on the topic and to be able to
compare them and hopefully conclude it into something useful.

5.3 Writing
To write this study in the correct format, skrivguiden [10] was of significant help. With few
exercises in writing, skrivguiden offers useful information of the content that should be
present in the different sections of a study.

This study uses IEEE Citation Reference system to refer to sources. The reference system
was discussed in class and concluded with several students and course coordinator. We can
use whichever reference system that we prefer. But the course coordinator prefers the IEEE
system over other.

This document follows the proposed study template given in the course PA1452 at BTH
autumn term of 2017.

6

6 ANALYSIS AND DISCUSSION
This section analyzes the content of the literature and discusses the different
approaches they have. With analysis of the Research Questions we gather information
from the Literature and compiles it to later come up with a Conclusion.

6.1 Principles of Error Handling
Protecting an API often causes restriction on the client-side. These restrictions are designed
to protect the system from breaking, but also to assist the end-user with information in real-
time. Notifying the end-user about the situation he/she is facing is handled with HTTP status
codes. HTTP status codes is the key communication chain between developers and end-
users. The purpose of having a status code is the possibility to share critical information with
both the system and the end-user. Therefore, content of error-codes is of huge importance.
But what principles should a developer really consider while designing a “good” response
message?

6.1.1 HTTP Status Codes
To really answer this question, one must understand the basics of http status codes. The
format of HTTP status codes is a three-digit code, with the first digit describing the category
type. These status codes are divided into five categories, described in the table below:

The Five Categories of Status Codes

1XX – Informational Received request, and the process is
continuing.

2XX – Success Action successfully received, understood
and accepted.

3XX – Redirection Further action must be taken to complete
request

4XX – Client Error Problem on the client-side, often because
of incorrect syntax.

5XX – Server Error Problem on the server-side, failing to fulfill
a valid request.

Figure 6-1. The Five Categories of Status Codes

Each of these categories contain a bunch of standardized status codes used widely. But the
question we should ask is if it really is necessary to support all these error codes. Guy Levin
writes in his article [8] that the only states we really need to consider in a RESTful API is:

• Everything worked as expected (200 – OK)
• The application did something wrong (400 – Bad Request)
• The API did something wrong (500 – Internal Server Error)

Levin also mentions three distributed systems and their list of error codes being used.
Distributed systems use no more than 8-10 status-codes. With systems like Netflix using 9
status codes, we could for sure say that there is no need to implement that many status-codes.
The technique Levin recommends is therefore to start with the three codes listed above and if
needed, expend the list of error codes.

With security in mind it is a good idea to already consider adding a few status-codes. The
reason for this is the implementation of authorization later in the study. With authorization,
we use 401 and 403, two different types of restrictions. We also add the 401 just to give a
hint to the developer that the route to the call may be incorrect for some reason.

• Authorization required (401 – Unauthorized)
• Valid request, but refused (403 – Forbidden)

7

• Resource not found (404 – Not Found)

6.1.2 Content of Error Code
With the HTTP status codes defined, we now have an error-code for the computer.
Developers and end-users may be able to interpret them as well, with varying results.
Kristopher Sandoval writes in his article [3] about three basic criteria to be helpful both for
the computer, developer and end-user. The three criteria are as follows:

• An HTTP Status Code
• An Internal Reference ID
• Human Readable Message

As we already discussed the HTTP status codes, we jump straight into the second criteria.
Internal Reference ID is a custom identifier separated from the status codes explained earlier.
This has more to do with the application than a HTTP error and it is therefore created by the
developer. The purpose of this ID is to point the end-user and developer to a specific
problem or functionality in the system itself, giving a hint of the problem that has occurred.

These error codes are as mentioned pointing
towards a specific problem. To explain the
problem within the server better, a good practice
is to add a human readable message. The
message is used to explain the error code itself.
This could also be used as an error message for
the client-side towards the end-user.

As we see in Figure 6-2, all three of these
contributed systems uses a HTTP Status Code,
but they also include some sort of human
readable information, in form of a JSON string.
They are for sure not following the same
standard, but the principle of a helpful answer is
present in all of them.

A description of the error can sometimes be difficult to formulate with few words. Therefore,
some distributed API’s include a link in the response JSON object, that is describing the
error thoroughly. This is of great service towards the customers using the system. Quick and
easy answer to the issue they are facing. In some cases, a description on how to solve the
problem is also included, which could be of huge value.

Huge applications like Facebook handles all errors by themselves. Even though you get a
200 OK from the API as seen in Figure 6-2. There is still a chance of errors occurring. The
reason for this is that the developers has more control over error-messages and can easier
find the cause of the problem. With a server seen as a black-box for the developer, a
dictionary is a very useful practice.

Figure 6-2. REST examples

8

6.2 Principles of Security
6.2.1 Why Security?
When designing the architecture of a RESTful API, one should take security to
consideration. But why is this important? By describing some threats introduced in the
article RESTful API Security [11], we hopefully open your eyes to securing your RESTful
API. As you are going through this section of the study, you will learn the necessity of
security. How you should design your architecture to make it secure whilst it still is as
functional as you first thought.

6.2.1.1 Data Interception
A RESTful API is the communication chain between the client and the server as we
explained in the Introduction section. This means that all vulnerable information is sent
through it. Therefore, it is of huge importance that the data is protected so that access to
information is restricted for users that does not meet the requirements.

6.2.1.2 DOS Attacks
Denial of Service (DOS) [14] is a widely-spread method used by attackers worldwide. The
principle of DOS is to use a bunch of connections (slaves) to point massive load towards a
victim. As seen in Figure 6-3

If the system is available to everyone, it is also
running a huge risk of being attacked with huge
amounts of data. This hurts the functionality, and
sometimes kills the API totally. Making it
impossible to send requests to it. Therefore,
avoiding requests from uninvited users is very
important.

6.2.1.3 Farming
Farming is the principle of scraping a RESTful API to be able to work with data from someone
else’s API. Preventing farming is important so that no unnecessary data is being transmitted.
If we’re not protecting ourselves against farming, chances of an unnecessarily overloaded API
stand upon us.

With these possible threats in your mind, we will now dive into the principles of protecting an
API against these. With a few steps, you can safely work with your API as you’d want to, in a
safe way!

6.2.2 Authentication VS Authorization
But before we introduce the key principles of security in a RESTful API, it is good to know
the difference between Authentication and Authorization. Nowadays, many people mistake
these concepts with each other causing a lot of confusion while trying to understand security
of API’s.

Travis Lindsay explains in his article [4] that “Authentication is, quite simply, verification of
who or what someone is”. This is basically the way you identify yourself with a username
and password, in the most standard cases. Authorization on the other hand, happens after you
have been authenticated in a system. It is more like a check in the system that evaluates if the
given user should be allowed to use a specific part of the system. For example, an Admin is
authorized for a bunch of functions that a regular user does not have access to.

Figure 6-3. DDoS Attack

9

6.2.3 HTTPS
Most of the threats described earlier are threats that we can be dealing with using a few
methods. Just protecting the API from untrusted connections, will help us a long way. As of
every security principle when it comes to the web, it is very important to use HTTPS instead
of the simple HTTP

HTTPS or Hyper Text Transfer Protocol Secure is a more secure protocol to use instead of
the normal HTTP. The difference in these two is mainly that HTTP sends messages in
cleartext compared to HTTPS encrypted messages. Advantage of an encrypted message is
that interception of the system is very hard. Not only does this prevent eavesdroppers. It also
ensures that the website you are visiting is the correctly certified website for the specific
business. The company that issued the certification vouches that the website you are
connected to is a part of their organization and not a scam.

However, Chris Hoffman mentions in his Article [16] about HTTPS that even though HTTPS
can seem to be safe from phishers and scammers, it is not. He says that some phishing
websites have noticed that people just check for the HTTPS and assumes it is safe, even
though anyone can certify a website with HTTPS. Certifying a website using HTTPS means
that the user in charge of the website gets a root certificate that can verify the validity of the
website.

HTTPS was originally developed to handle login with passwords only, but has later become
a standard for every website, to protect data overall. This is a great start of protecting the
data being sent with the API. Both personal data and protection of API keys for example.

6.2.4 Access Control
According to OWASP [2] it is of huge importance to perform access control on each endpoint
of a nonpublic API. This is handled with the two concepts of API keys and JWT.

API Keys is the beginning of the modern API Security. In fact, many
people still believe this is the way to securely handle an API. But an
API key working alone is not any fancier than a revocable, non-
expiring, bearer-access token. Travis spencer compares an API key to
a normal padlock in his presentation [18] from 2015. The API Key is
obviously presented as the key, and the padlock is presented as the
API. The provided key will most likely be able to access the API as it
should. But the problem comes if the key is being passed to another
user, which also would be able to unlock the padlock. The API
provider has no real chance of really evaluate if the person really is the one who really was
meant to gain access to the system. Making it vulnerable to access from unreliable sources, if
they only get the hands on the key.

To prevent this vulnerability of the system, Padlock talks about OAuth2, an industry-
standard protocol for authorization. He explains it as a protocol of protocols, a base for other
specifications. OAuth adresses some important requirements that API Keys does not fulfill.
Some examples of those are delegated access, no password sharing and revocation of access.
Overall, this provides more control for the resource owner. Involved in the “dance” of
OAuth is four actors:

1. Resource owner
2. Client
3. authorization server
4. resource server.

These four roles all have unique roles and is each very important to the concept of OAuth.
But is OAuth2 enough security to call your API “safe and secure”. According to David
Blevins [12] it is not enough. But this has less to do with the security than expected.

Figure 6-4. Padlock

10

David compares the OAuth2 method to a HTTP Session that only lives in a specific scope.
The problem described in his presentation is that request load on the authorization server and
resource server is way too large and may hurt the system in case of an attack from the
outside. Instead, David introduces another method called JWT that combined with OAuth
would make the load on the server less heavy.

JWT or JSON Web Tokens [17] is a self-contained solution to safely transmit information
between client and server side as a JSON object. Self-contained means that it contains all
information about the user, and does not have to search the database for each individual call
to the API. This decreases the load on the server by a huge amount, and makes the
authentication process much faster.

JWT consists of three key parts - header, payload and signature. These three are divided
within three different JSON objects. The header normally consists of the token type and the
algorithm used for hashing. Payload is the metadata that is interesting to authenticate a user.
It could be username, role, ids and more. It also contains claims about the entity in question.
The last part is the signature.

Figure 6-5. Design of Signature

The signature is created by encoding the header, payload and a secret with the algorithm
specified in the header. It is later used to verify the end-user to be the identifier it says it is in
the payload part, and ensure that no changes have been made to the token.

As specific data about the user can be sent through the JWT, the end-user can hold their
information needed to authenticate themselves. Making it much easier to just authenticate the
user with a single signature validation, validating that the signature is known and that its has
not changed. Reducing the overall load on the authorization server. This is what David
compares to a HTTP Cookie in his presentation [12].

With this technique, we have a way of safely locking our API, with the possibility to
recognize the user with the minimum load on the server. But is this really the full solution to
the problem we are facing, is it safe now? Many developers would probably be more than
happy with this solution.

But we are still facing a threat with all this protection. We have dealt with threats from
outside, but what if the hacker reaches our internal servers. The Target Hackers [19] is a great
example of hackers gaining access from the inside. They received the login information
while working at the company Target, giving them access to the whole enterprise server.
How could we possibly protect our internal servers from attacks like these. Well, it is simple
if the methods explained above already exist in the system. David Blevins covers this section
in his presentation [12] as well. He says that the solution to protection of the internal part is
simply to send the users JWT inside the Internal system as well. Hopefully a user-role is
saved to the end-users JWT and authorization of the privileges he/she has is the way to go.
This prevents unauthorized workers from accessing the whole system, making them
restricted to their section only.

11

6.2.5 Format Checking
Another important part According to the OWASP [2] is to validate the data being sent to the
API. The reason for this has more to do with the REST services functionality than protection
from “bad users”. If incorrect data would be sent to a REST service, chances of responses
failing is huge. Worst case scenario with incorrect data coming through is the possibilities of
total breakdown. Developers always aims for 100% uptime, because failure in systems are
very expensive.

The first important part of format checking is to validate the content type being sent.
According to OWASP the requests shall match the intended content-type in the header.
Otherwise chances of misinterpretation at consumer side is huge, and could also lead to code
injections being a threat. The most common content type today is the “application/json”, but
is in some cases combined with multiple response types if necessary, such as
“application/xml”.

The second important part is input validation. Input validation is performed to ensure that
properly formatted data is being sent to the service. The difference between validating
content-type and input validation is that content-type is more like the protocol or language it
is being written in, and validation of input is more like spellchecking of sentences. OWASP
recommends the developer to not trust input parameters or objects from anyone, meaning
that every request shall be handled as a possible threat.

To prevent untrusted requests, limiting the possibilities of incorrectly formatted data is key
to success. OWASP has a list of principles to limit formatting of responses.

6.2.5.1 Strong Types
As a developer, having control over the types of answers we achieve from end-users is
important. A good start is to set strong types like Booleans, numbers, floats or date objects.
Making it easier to control what comes in, and protecting against misuse of the API.

6.2.5.2 Length and Range Validation
Validating range and length is important to prevent the end-user from doing some sort of
code injection. If the end-user would be able to write several lines of code in input fields, it
would have been a much larger chance for the developer to miss out on some sort of
injection style.

6.2.5.3 Request Size Limit
We have already talked about load on the server by addressing the issue with “bad” users
causing load on the server-side. With this prevented, we can still manage load problems with
unnecessary large sizes of requests. By limiting the request size, we prevent overloading the
API. Using the Status Code 413 Request Entity Too Large to address the issue.

6.2.5.4 Constrain Using Regular Expressions
Regular Expressions or “RegExp” is a great method for validating string inputs. If the
program needs a string input, we can evaluate the content of it, and remove unwanted special
characters for example.

12

7 RESULTS

7.1 Principles of handling error states
Several principles of error-handling are presented in section 6.1 of this study. One of the key
principles in handling error states is to really consider the amount of error states being used
by the system. An Example being presented in section 6.1.1 shows that well distributed
companies aims for a small amount of eight to ten (8-10) error-codes used in their entire
system.

Section 6.1.1 also addresses the technique used for error-handling to start with as few error-
codes as possible, expanding the system if necessary. The following error codes is a great
start to handling errors in a RESTful API.

• Everything worked as expected (200 – OK)
• The application did something wrong (400 – Bad Request)
• The API did something wrong (500 – Internal Server Error)

But with security in mind, we can already think of reasons to expand this error-state base.
When considering expanding the system, a well thought reason behind it should be
presented. The reason is just so that the developer is confident in the decision and knows the
reason of expanding. Adding the following three error-codes with the reason of creating an
authentication based RESTful API is a reason good enough.

• Authorization required (401 – Unauthorized)
• Valid request, but refused (403 – Forbidden)
• Resource not found (404 – Not Found)

The reason for trying to limit the number of error-codes is obvious when presented. The
HTTP error codes should handle the connection between clinic and server. With the only
outcomes of connected successfully, failed to connect, or connected but failed to execute.
Internal errors on the server side should instead be presented with an internal error handling
system. Examples in Figure 6-2 shows how three well established companies handles errors
internally. With a JSON string sent back, presenting an internal error is much easier. It
should consist of:

• Internal error code (have some system to it)
• human readable error message (short and descriptive)
• link to help and solutions (used in best cases)

With well-designed error-handling, users get a better response message resulting in less
unnecessary calls to the API. Error-handling can provide against unnecessary load on the
API or in worst case API overload. Companies should put down hours into designing it.

7.2 Main types of interception and protection against it?
This is the biggest concern regarding security within RESTful API’s. As most RESTful
API’s out there are public we need some sort of validation to delimit who can access it.
Without delimiting the access points to the API, chances of interception, farming and DDOS
attacks are huge.

7.2.1 Threats
Interception of the system may occur if the API requests are not encrypted. If somebody
where to wire-tap the connection to the API whilst a user is trying to connect, their
credentials are standing a huge risk of getting taken by the hacker. This could possibly give
the hacker access to the whole enterprise and all secrets that is has, with devastating
consequences.

13

As Mention in section 6.2.1 Farming is the method of scraping a RESTful API to be able to
work with data from someone else’s API. Farming of the system may also occur if the
requests are not encrypted. Though farming has more to do with uninvited use of the system
and is therefore handled with authentication. Farming can cause a lot of unintended load
which could lead to slow loading times for the users really intended to use the system.
Another threat mention in section 6.2.1 is the widely used DOS (Denial of Services) attack.
The principle of DOS is simply to overload the system with way too many requests at the
same time. This is hard to prevent, but with a superior design you can minimize the risks of
unintended requests causing damage.

7.2.2 Protecting Against It

7.2.2.1 HTTPS
To begin with, HTTPS is a MUST to be able to create the access control at a later stage.
HTTPS or “Hyper Text Transfer Protocol Secure” is an alternative protocol to the normal
HTTP, with the difference of encrypted messages. As Mentioned in section 6.2.3 it was first
used to handle logging in on websites. But has later become a standard for almost every
serious enterprise websites. The reason for this is simply that HTTPS uses encrypted
messages. By having encrypted messages, we achieve a way to send “secrets” to the API.
Secrets that may contain login information, but in this case API keys. This makes it possible
to authenticate users individually.

7.2.2.2 Access Control
Performing access control on each endpoint of the system is important to authenticate the
users connecting to the system. API keys are not the way to go because it works like a real-
life padlock. The key can be sent to several devices and gain the same access as the one
intended to have the key. Causing a problem in authentication of the user, with the system
having no feasible way of identifying the identification of the end-user. To solve this, a
combination of OAuth2 framework and JWT is used.

OAUTH2 is a framework for authorization. As mention in section 6.2.4 OAuth adresses
some important requirements that API Keys does not fulfill. Some examples mentioned are
delegated access, no password sharing and revocation of access. With these functionalities,
the API has a way of identifiying the end-user safely without a threat of the identification
being sent further. This may sound great but is still not enough to safely handle access
control. Also mentioned in 6.2.4 is the problem with authentication request that has to be
sent over and over again to validate the information to the authorization server. While OAuth
is compared to a HTTP session that has a life length that has to be renewed, including JWT
makes it comparable to a HTTP cookie with all necessary information inside of it.

JWT or “JSON WEB TOKEN” is a self-contained solution to safely transmit information
between client and server side as a JSON object JWT is used to save information for
authenticating the user on the client side instead of the server side, taking away a sizable
chunk of load from the authorization server. Making requests only first time and whilst
renewing of tokens is needed.

7.3 Main types of misuse and protection against it?
The most common types of misuse by normal users is input of incorrect data. This is handled
with several methods of format checking. Presented in section 6.2.5 is a list of principles
from OWASP that explains the main types of format checking. Including topics about strong
types, length/range validation, request size limit and regular expressions. These should be
working together to prevent unnecessary big data or incorrect data to pass through to the
API. If not handled correctly chances of overloading the API, injections and errors are much
larger.

14

8 CONCLUSION
In this study, we have evaluated the process of securing a RESTful API. With several
articles and information of approaches used by well distributed systems we have put
together some interesting techniques that where found and investigated into. We’ve
considered techniques like HTTP status codes, HTTPS, Access Control with OAuth2
and JWT and finally format checking. We have concluded that the optimal solution is
not to have one of these techniques, but to combine them all into a framework working
together.

To summarize this study, we found that:

In the first question regarding principles of handling error states, we found out that the
optimal approach to error handling is to start with a few HTTP error codes, implementing an
internal error handler within the API, with the purpose of describing the errors occurring in
the backend to the end-user.

In the second question regarding main types of interceptions, we found out that the best
solution to protect against interception and unintended use of the system is to use the
combined technologies of OAuth2 and JWT. This makes the system able to identify the end
user, with the possibility to save the authentication information in the JWT, so that the load
on the authorization server is minimized.

Another important part that we introduced was the principle of securing the inside of the
API. Without any security inside the enterprise system, it could be vulnerable to these
concepts, by a human being just getting introduced to any valid connection details. By
sending the signature through the backend as well, we can authorize the user and limit its
access rights.

In the third question regarding main types of misuses, we found out a list of principles to
protect against misuse from “good users”, or users that is using the system correctly. We
investigated in several types of format checking and why they are needed to ensure that the
end-user only sends valid data. By implementing format checking in the form of Strong
types, Length and Range validation, Request Size Limit and constrain data with regular
expressions, we can limit the user to only push valid data.

15

9 REFERENCES
Most of the references in this study is articles found while browsing internet for
valuable sources. As of today, most of the information found about web specific topics
are to be found on the internet itself. However, the information about what REST and
REST-API really is where found in the book REST API Design rulebook.

9.1 Sources
[1] REST API Design Rulebook
By: Mark Masse
Link: http://proquest.safaribooksonline.com.miman.bib.bth.se/9781449317904
ISBN: 978-1-4493-1050-9

[2] REST Security Cheat Sheet
By: Erlend Oftedal, Andrew van der Stock, Tony Hsu Hsiang Chih, Johan Peeters
Link: https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
Assessed: 12-09-2017

[3] Best Practices for API Error Handling
By: Kristopher Sandoval
Link: https://nordicapis.com/best-practices-api-error-handling/
Assessed: 12-09-2017

[4] Authentication vs Authorization -- What's the Difference?
By: Travis Lindsay
Link: http://www.investorguide.com/article/16034/authentication-vs-authorization-d1503/
Assessed: 12-09-2017

[5] The Curious Case of API Security
By: Gunnar Peterson
Link:https://www.axway.com/sites/default/files/resources/whitepapers/axway_collateral_api
_top_11_threats_en.pdf
Assessed: 12-09-2017

[6] Architectural Styles and the Design of Network-based Software Architectures
By: Roy Thomas Fielding
Link: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
Assessed: 13-09-2017

[7] Service-Oriented Architecture (SOA) Definition
By: Douglas K Barry
Link: http://www.service-architecture.com/articles/web-services/service-
oriented_architecture_soa_definition.html
Assessed: 13-09-2017

[8] REST API Error Codes 101
By: Guy Levin
Link: http://blog.restcase.com/rest-api-error-codes-101/
Assessed: 22-09-2017

16

[9] RESTful API Design: what about errors?
By: Brian Mulloy
Link: https://apigee.com/about/blog/technology/restful-api-design-what-about-errors
Assessed: 25-09-2017

[10] Skrivguiden
By: Skrivguidens redaktion
Link: http://skrivguiden.se/
Assessed: 25-09-2017

[11] RESTful API Security
By: John Vester
Link: https://dzone.com/articles/restful-api-security
Assessed: 03-10-2017

[12] Deconstructing REST Security
By: David Blevins
Link: https://www.youtube.com/watch?v=9CJ_BAeOmW0
Assessed: 03-10-2017

[13] API Keys ≠ Security: Why API Keys Are Not Enough
By: Kristopher Sandoval
Link: https://nordicapis.com/why-api-keys-are-not-enough/
Assessed: 03-10-2017

[14] Denial of Service Attack
By: Margaret Rouse
Link: http://searchsecurity.techtarget.com/definition/denial-of-service
Assessed: 04-10-2017

[15] REST Security Cheat Sheet - Farming?
By: Jim Manico
Link: https://lists.owasp.org/pipermail/owasp-cheat-sheets/2015-August/000051.html
Assessed: 04-10-2017

[16] What is HTTPS, and Why Should I Care?
By: Chris Hoffman
Link: https://www.howtogeek.com/181767/htg-explains-what-is-https-and-why-should-i-
care/
Assessed: 06-10-2017

[17] Introduction to JSON Web Tokens
By: jwt.io
Link: https://jwt.io/introduction/
Assessed 13-10-2017

[18] The Nuts and Bolts of API Security
By: Travis Spencer, Twobo Technologies
Link: https://www.youtube.com/watch?v=tj03NRM6SP8
Assessed 14-10-2017

[19] Target Hackers Broke in Via HVAC Company
By: Brian Krebs
Link: https://krebsonsecurity.com/2014/02/target-hackers-broke-in-via-hvac-company/
Assessed 15-10-2017

17

9.2 Figures
Figure 3-1. The web as a client-server application framework
Link: http://www.robert-drummond.com/2013/05/08/how-to-build-a-restful-web-api-on-a-
raspberry-pi-in-javascript-2/

Figure 6-1. The Five Categories of Status Codes
Link: http://blog.restcase.com/rest-api-error-codes-101/

Figure 6-2. REST examples
Link: http://blog.restcase.com/content/images/2015/12/error-codes-rest-api.png

Figure 6-3. DDoS Attack
Link: https://www.keycdn.com/support/ddos-attack/

Figure 6-4. Padlock
Link: https://pixabay.com/sv/cybers%C3%A4kerhet-s%C3%A4kerhet-l%C3%A5s-
1915626/

Figure 6-5. Design of Signature
Link: https://jwt.io/introduction/

