

2016-10-10, Revision C
Blekinge Institute of Technology
Advanced topic in Web development

CSS Preprocessors are cool

Kalle Kihlström

Kalle Kihlström
Web Programming
2013, BTH, Blekinge institute of technology
kalle_kihlstrom@hotmail.com

School of Computing

BTH, Blekinge Institute of Technology 371 79 Karlskrona
+46 455 38 50 00

mailto:kalle_kihlstrom@hotmail.com

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

Abstract
In this article I go through and cover two of the major CSS preprocessors Less and Sass.
What features do they offer and which one is actually the best? I’ll go through everything
from installation and setup to syntax and performance.
I’ll also discuss whenever it’s worth going over to a CSS preprocessor or continue to use
standard CSS. So welcome to the world of CSS preprocessors.

1

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

Abstract
1. Introduction

1.1 Background
1.2 Intention
1.3 Method

2. Results
2.1 Selection of pre-processors
2.2 Less

2.2.1 About
2.2.2 Features
2.2.3 Syntax
2.2.4 Setup & usage

2.3 Sass
2.3.1 About
2.3.2 Features
2.3.3 Syntax
2.3.4 Setup & Usage

3. Discussion
3.1 Personal reflections Less
3.2 Personal reflections Sass
3.3 Comparison

4. Conclusion
5. Summary
5. References

2

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

1. Introduction

1.1 Background
CSS (Cascading Style Sheets) is a stylesheet language used to format and style documents
written in a markup language. CSS is and has for a long time been a very important
technology in web development and is used in almost every website and web application
today.

Since the first release of CSS back in 1996 it has evolved a lot and is still doing so. With the
addition of the CSS2 and CSS3 specifications we’ve got new things like media queries,
namespaces and additional selectors, but even with these and a lot of other additions, CSS
is still lacking some key features and functionality that we are used to from other
programming languages.

One possible solution to make up for the limitations in the CSS language is to use something
called a preprocessor. A CSS preprocessor converts data written in the preprocessors
syntax to ordinary CSS syntax and acts as an extension of the CSS language. Therefor a
preprocessor can add additional features and functionality for the developer to use and in
the end the preprocessor compiles the code to regular CSS.

1.2 Intention
In this article I plan to go through the features of CSS preprocessors, advantages and
disadvantages of using one. I’ll cover the two most popular CSS preprocessors, and
compare them to each other.

1.3 Method
I’ll start by gathering information on CSS preprocessors in general as well as advantages
and disadvantages of using one. Then I’m going to select two CSS preprocessors to
investigate more in detail. The two most popular preferably.

I’ll then research and gather information on each preprocessor and ask the following
questions:

● Which limitations of standard CSS does this preprocessor eliminate (added
functionality)?

● What does the syntax look like, and how is it to work with?
● How is the performance?
● How is it installed and how is the usability?
● Does it have any limitations?

3

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

In the end I’ll write a piece about every preprocessor, compare the two preprocessors based
on earlier findings and answer the second research question (which preprocessor is the
best?) and also answer to the first research question based on my research and discoveries.

2. Results

2.1 Selection of pre-processors
I decided to cover the two most used and most popular[1] CSS pre processors in this article
Less[2] and Sass[3]. These two were also the first CSS pre processors that was supported by
Codepen.io[4] (a CSS/JavaScript/Markup web based playground for designers). They are
also the two CSS preprocessors with the highest star count on GitHub[5] at the time being,
with Less sitting close to 13000 stars and Sass at nearly 7000 stars.

2.2 Less

2.2.1 About
Less was first created back in 2009 by Alexis Sellier. Less was originally written in the
programming language Ruby but was later translated into JavaScript. The main
development has since continued in JavaScript.
Less is today maintained by a core team consisting of seven members who donates the time
and effort they afford. Another big part of the continued development of Less is the
community who contributes to and supports Less.
Less has since the start been ported to many other languages including Java, .NET, PHP,
Python and ruby.[6]

2.2.2 Features
Variables, Less supports variables a basic missing feature of CSS. Variables in Less are
constants meaning they can’t be over-written. Some values are often repeated many time in
a stylesheet, variables make it easier to maintain and control these values. You can assign
nearly anything to variables in Less and use them in most contexts such as in selectors,
imports, URLs, properties and values.

Mixins, Another addition added in Less is Mixins. Mixins (short for “Mixing in”) are defined of
a bunch of properties which later can be reused in other rule-sets by calling the name of the
mixin. Less mixins does also support incoming arguments which can make them even more
reusable.

Nested rules, Another feature added with Less is nested rules. This eliminates the need of
repeating the parent(s) element(s) every time when working with nested element structures.

4

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

Operations, Less supports mathematical operations such as addition, subtraction.
multiplication and division. Less supports operation on numbers, colors and variables and
converts units before calculating, if a conversion not is possible Less will ignore it from the
result.

Functions (Built in), Less comes with many built in functions for you to use right out of the
box, functions for manipulation of colors, doing math, manipulation of strings and much
more.

Loops, Less mixins has the ability to call themselves, when combining this with the Less
features, pattern matching and guard expressions it’s possible to create loop structures.

Comments, Less supports both one line comments (“//”) as well as block comments (“/**/”).

2.2.3 Syntax

Less syntax looks a lot like the CSS standard syntax with the addition of variables, mixins
and other additions to the language..
Below are a few examples of the Less syntax.

Variables and operations

@red: #ff0000;
@another-red: @red + #111;

#header {
 color: @another-red;
}

Mixins, single line comment and built in function

// Border mixin
.bordered(@color) {
 border-left: ridge 3px @color;
 border-right: dashed 2px grey;
}

article {
 color: lighten(red, 25%);
 .bordered(@color);
}

5

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

2.2.4 Setup & usage

The most common and straightforward way of using less is through Node[7]. The installation
process is therefore really easy and compatible with most platforms (Linux, Mac, Windows)
and the only dependency is Node.js and Node.js package manager npm[8]. Less can be
installed globally with the following command:

npm install less -g

You can now use the following line in your CLI to compile .less files to .css

compile style.less to style.css
$ lessc bootstrap.less bootstrap.css

Less can also be compiled on the client side, through the browser. This is only
recommended during development though, since it can slow down the loading time of the
page a fair amount.
To get Less compiling in the browser you need to include the less script found on the official
Less site [9].

Less files to be compiled

<link rel="stylesheet/less" type="text/css" href="style.less" />

Include the less compile script

<script src="less.js" type="text/javascript"></script>

Another way of using and compiling Less is through a GUI application, There are several of
them out there. You can also compile Less through different online compilers.
There are also several online playgrounds that supports less such as Codepen[10] and
JsFiddle.[11]

2.3 Sass

2.3.1 About
Sass (short for Syntactically Awesome Stylesheets) was started back in 2007 and has since
then been active for almost nine years.[3]
The project was initially started by Hampton Catlin and is an open source project run by a
core team with help of contributions. The original implementation of Sass is written in
Ruby[12], however just like Less, Sass has been translated to many other languages including
an official high performance port for C and C++ called libSass, there are also wrappers for
JavaScript, Node, .NET, PHP, perl and many other languages.[13]

6

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

2.3.2 Features
Variables, Sass has support for variables, variables in Sass are treated like constants just
like in Less. You can assign most things to a variable in Sass including font-stacks, colors,
booleans, lists, maps and properties.

Mixins, Sass supports mixins.

Nested rules, Nesting is also supported in Sass which makes the code much easier to
maintain and saves a lot of time since you don’t have to repeat long selectors when working
with nested elements. It’s also also possible to nest properties in Sass which is a cool and
quite unique addition.

Operations, Mathematical operations such as addition, subtraction. multiplication, division
as well as modulus are supported in Sass..

Functions, Sass comes with many handy built-in functions ready which are ready to use,
but it does also support creation of own functions.

Loops, Sass comes with direct support for loops, both for-loops and foreach are supported.

Directives & Expressions, Another great addition added in Sass is the support of
IF-statements. Sass also supports else and elseif in combination with if-statements.

Comments, Just like Less, Sass supports both one line comments (“//”) as well as block
comments (“/**/”).

2.3.3 Syntax

Unlike Less, Sass offers two ways of writing it’s syntax, the original syntax (SASS) which
was inherited from Haml[14] and the newer SCSS (Sassy CSS) syntax which is more familiar
to the regular CSS syntax. The two syntaxes use different file endings .sass for the old
syntax and .scss for the new syntax. Both syntaxes are still supported and the plan is to
continue support both of them in the future. The biggest difference between the two is that
the new syntax uses semi-colons and brackets just like CSS whereas in the old syntax you
can simply skip them and instead just indent the code.[3]

7

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

So, a few examples of the syntaxes side by side.

Variables and operations

SCSS SASS

$red: #ff0000;
$another-red: $red + #111;

#header {
 color: $another-red;
}

$red: #ff0000
$another-red: $red + #111

#header
 color: $another-red

Mixins, single line comment and built in function

SCSS SASS

// Border mixin
=bordered($color) {
 border-left: ridge 3px
$color;
 border-right: dashed 2px
grey;
}

article {
 color: lighten(red, 25%);
 +bordered(red);
}

// Border mixin
=bordered($color)
 border-left: ridge 3px $color
 border-right: dashed 2px grey

article
 color: lighten(red, 25%)
 +bordered(red)

Custom function

SCSS SASS

@function minus-one($value) {
 @return $value -1;
}

@function minus-one($value)
 @return $value -1

2.3.4 Setup & Usage

To get started with Sass all you need is Ruby. Newer Macs comes with Ruby pre-installed,
while if you are running Linux and Windows you’ll need to install it manually, but it’s pretty
straight forward. When Ruby is installed you run the following line to install Sass:

gem install sass

Just as Node, you use the package manager in this case gem to install Sass.
When the installation is finished you are ready to compile Sass from the CLI, you can do so
with the following command line:

sass style.scss style.css

8

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

Sass also supports watching files and folders and will auto compile the any Sass when
changes are detected. All you need to do is add the --watch flag as an option:

sass --watch style.scss:style.css

There are also several GUI applications and online compilers which are able to compile
Sass to CSS as well as online playgrounds.

3. Discussion

3.1 Personal reflections Less
Personally I’ve spent more time with Less than any other CSS preprocessor. Why? because
it was the first CSS preprocessor I got introduced to, I felt like it met my expectations and
demands at the time so I found no real reason to look for other alternatives. Also, when you
get used to something and are comfortable in an environment or setting it’s often harder to
take a step away from it and embrace something new. It’s not until now, the past half year or
so that I’ve started looking around and testing other preprocessors.

I feel like Less is easy to take in and the learning curve is great, it’s easy to get started and
start using the basic functionality but there’s also a lot more advanced functionality and
features that can be learned over time. The syntax is just like CSS with the addition of the
new features introduced with Less, this makes it really easy for anyone with CSS experience
to get a hang of it and understand most of the code even though they might have limited
experience with Less itself. Less is also really easy and fast to setup and it’s easy to setup
both client side and server side compilation.

One thing that I miss in Less is the ability to write my own functions, although mixins can
substitute the need of functions in many cases. This makes the lack of custom functions
more bearable.

3.2 Personal reflections Sass
Lately I've gotten more and more interested in Sass after seeing it more often when
browsing sites like CodePen.[10]
I first feared that it would be harder to setup and use than Less but this was not the case.
The setup is as easy if not easier than setting up Less since Ruby already comes
pre-installed on Macintosh computers. I also like that Sass comes with file and folder watch
support through CLI built-in.

When it comes to the syntax, I personally really like the old syntax since it’s so simplified,
removing the semicolons and brackets makes it both faster, prettier and easier to read in my

9

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

opinion. It looks a lot like Haml and is similar to python where you also has the ability to skip
brackets and semicolons.
I definitely see why many people prefer the newer SCSS syntax though. It’s much closer to
standard CSS which is a good thing if you are jumping between regular CSS, Sass and/or
other preprocessors in different projects, this will makes the transitions much more fluent, it’s
definitely also easier for beginners and for people with zero SCSS experience since it’s so
close to standard CSS.

Sass also supports features such as custom functions, for and foreach-loops as well as if,
elseif and else statements. These are all very welcomed additions.

3.3 Comparison
Sass and Less are very similar in many ways, especially when looking at the more basic
functionality like mixins, variables, operations and nesting. The syntax for these features are
almost identical. Although if you chose to go with Sass you also have the opportunity to use
the old indented based SASS syntax, additional options are always welcome.

When looking at the performance of the two preprocessors Less beats Sass with quite a
large margin when compiling an identical 200KB CSS file. Sass compiled it in 4.9s and in
2.5s with a near to current .sass cache. Less compiles the same file in only 0.5s.[15] You
could argue whenever performance is important or not since you generally only compile the
files during development. A long compilation time could be quite annoying though when
developing, and I feel like as long as the compilation is under or around the 2s mark it’s
bearable.. 200KB is a quite large stylesheet so take that into consideration when looking at
the compilation times.

Poor error messages can be a real pain when developing and debugging. I made a small
test scenario to compare the error messages that Less and Sass puts out. As a conclusion I
found that the Less error output was much clearer and easier to read while Sass error
messages are a bit messier and not quite as easy to read, even though they are still pretty
good.
The first picture below is an error output from Sass and the second picture below is the
same error output but outputted by Less.

10

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

When looking at more advanced features Sass has more to offer. Sass has built in support
for loops and statements which Less is lacking. Most of this can still be achieved in Less but
requires you to write additional code and it doesn’t look as nice as the built-in features Sass
offers.
The support of custom functions in Sass is another advanced feature that Less is lacking.

Both pre-processors are easy to setup and use. Sass depends on Ruby while Less depends
on Node.js, both supports Mac, Windows and Linux and both have GUI applications and
online compilers for users who find that interesting. They are both ported to many other
programming languages and has a wide range of plugins, so no real favour for anyone there.
The built-in watch support in Sass is nice, to achieve the same with Less you need a plugin
which is easy to install but still an additional step. While Sass has watch support it lacks
support of client-side compilation which Less supports through Less.js.

4. Conclusion
You can’t really go wrong when choosing between Less and Sass, both are a big step up
from CSS and comes with many handy additions. Both are easy to use and setup, both has
wide application and plugin support. Both has excellent documentation. Less has prettier
Error messages and client-side compilation support from the get go while Sass has watch
support. Sass has more features than Less, most of them might not be used regularly but
are still nice to have when you need them. On the other side, if you’re not a power user you
might not even need these features anyway.
All together I feel like Sass is a more competent pre-processor mainly because of its
features and more advanced additions it offers over Less.

Less, Sass or another preprocessor is not mandatory to use but I would highly advise
everyone working with CSS to use one. The time it takes to setup, learn and use a
preprocessor like Less or Sass is just a drop in the ocean compared to the amount of time
you can save from using one. No more repetition of browser prefixes or repeating long
selectors. No more repetition of the same style-set or color on 20 different places in a file.
The ability to write nested selectors is one of my favorite things about CSS preprocessors, It
saves a large amount of time and makes the code easier to maintain and read at the same
time. It’s hard to go back to writing regular CSS after getting used to this.

11

2015-10-18, Revision A

Blekinge Institute of Technology
Advanced topic in Web development

These are just some reasons why everyone should use a preprocessor like Less or Sass.
Another major reason is that it makes it possible to write DRY (Don’t repeat Yourself) CSS,
which is impossible with just regular CSS.

5. Summary
A CSS preprocessor converts data written in the preprocessors syntax to ordinary CSS
syntax and acts as an extension of the CSS language. Therefor a preprocessor can add
additional features and functionality for the developer to use and in the end the preprocessor
compiles the code to regular CSS. The two largest and most used CSS preprocessors are
Less and Sass and they both offer some great additions to CSS. Sass and Less are very
similar in many ways, much of the functionality they offer is nearly identical between them.
Sass comes with some more advanced functionality such as loops and expressions. In the
end both Sass and Less are mature and feature rich preprocessors and you can’t go wrong
when choosing one of them, both are great.

5. References
http://www.w3.org/Style/CSS/
http://sass-lang.com/documentation/
http://lesscss.org/features/

[1] https://css-tricks.com/poll-results-popularity-of-css-preprocessors/
[2] http://lesscss.org/#getting-started
[3] http://sass-lang.com/
[4] http://blog.codepen.io/2013/04/08/statistics-on-preprocessor-usage/
[5] https://github.com/showcases/css-preprocessors
[6] http://lesscss.org/about/
[7] https://nodejs.org/en/
[8] https://www.npmjs.com/
[9] http://lesscss.org/#download-options-browser-downloads
[10] http://codepen.io/
[11] https://jsfiddle.net/

[12] https://en.wikipedia.org/wiki/Sass_(stylesheet_language)
[13] http://sass-lang.com/libsass
[14] http://thesassway.com/editorial/sass-vs-scss-which-syntax-is-better
[15] http://www.solitr.com/blog/2014/01/css-preprocessor-benchmark/

12

http://www.w3.org/Style/CSS/
http://sass-lang.com/documentation/
http://lesscss.org/features/
https://css-tricks.com/poll-results-popularity-of-css-preprocessors/
http://lesscss.org/#getting-started
http://sass-lang.com/
http://blog.codepen.io/2013/04/08/statistics-on-preprocessor-usage/
https://github.com/showcases/css-preprocessors
http://lesscss.org/about/
https://nodejs.org/en/
https://www.npmjs.com/
http://lesscss.org/#download-options-browser-downloads
http://codepen.io/
https://jsfiddle.net/
https://en.wikipedia.org/wiki/Sass_(stylesheet_language)
http://sass-lang.com/libsass
http://thesassway.com/editorial/sass-vs-scss-which-syntax-is-better
http://www.solitr.com/blog/2014/01/css-preprocessor-benchmark/

